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RESUMO  

A valorização de resíduos agroindustriais pela ótica da química verde apresenta grande potencial 
para a substituição de plásticos convencionais. A casca do abacaxi, frequentemente descartada, 

contém elevados teores de celulose e compostos fenólicos com reconhecida atividade antioxidante, 

configurando-se como biomassa promissora para o desenvolvimento de biofilmes sustentáveis. Neste 
estudo, investigaram-se propriedades eletrônicas de moléculas representativas da casca — ácidos 

fenólicos, flavonoides e celobiose — por meio de cálculos baseados na Teoria do Funcional da 

Densidade (DFT) no software ORCA. Foram obtidas geometrias otimizadas, orbitais de fronteira, 

energias HOMO–LUMO, potenciais de ionização, afinidades eletrônicas e análises de reatividade. 
Os resultados indicam que os fenólicos apresentam HOMO elevado e delocalização eletrônica 

compatível com sua forte ação antioxidante, enquanto a celobiose exibe grande gap eletrônico e 

comportamento σ-localizado, coerentes com seu papel estrutural e isolante térmico. As informações 
obtidas fornecem base molecular sólida para explicar propriedades experimentais observadas em 

biofilmes de PVA reforçados com componentes da casca de abacaxi. 

PALAVRAS-CHAVE: Nanocelulose; Filmes biodegradáveis; Casca de abacaxi; PVA; DFT; 

Orbitais de fronteira; Potencial de ionização; Afinidade eletrônica. 

 

   INTRODUÇÃO 
O acúmulo de resíduos plásticos e seus impactos ambientais motivam a busca por materiais 

biodegradáveis e alternativas derivadas de biomassa, em consonância com os princípios da química 

verde (ANASTAS; WARNER, 1998). Nesse contexto, o aproveitamento de resíduos agroindustriais 

não apenas reduz descartes, como também agrega valor a subprodutos ricos em componentes 

estruturais e funcionais (CLARK; LUQUE; MATHARU, 2012). 

 

A casca do abacaxi destaca-se por apresentar alto teor de celulose e hemiceluloses, além de 

compostos fenólicos bioativos com atividade antioxidante comprovada (BALDWIN et al., 2012; 

NGO et al., 2021). Biofilmes de poli(álcool vinílico) (PVA) reforçados com extratos ou nanocelulose 

derivados da casca já demonstraram melhorias em estabilidade térmica, resistência mecânica, 



propriedades de barreira e atividade antioxidante (NOGUEIRA et al., 2023). Contudo, permanecem 

lacunas sobre os mecanismos moleculares responsáveis por essas propriedades (LI; CHEN, 2022). 

 

Assim, a modelagem teórico-computacional via DFT fornece meios para investigar, em nível 

eletrônico, como fenóis e celobiose contribuem para o comportamento funcional de biofilmes de 

PVA. A compreensão desses mecanismos é crucial para estabelecer critérios de formulação e 

otimização de biomateriais.. 

 

   FUNDAMENTAÇÃO TEÓRICA 
A Teoria do Funcional da Densidade (DFT), formulada nos teoremas de Hohenberg-Kohn e 

implementada na abordagem orbitais de Kohn-Sham, representa o método eletrônica-estrutura de 

melhor compromisso entre custo computacional e acurácia para sistemas moleculares (PARR; 

YANG, 1995). A aproximação de Kohn-Sham descreve a densidade eletrônica exata por meio de 

orbitais de partícula única, permitindo estimar propriedades como energias de orbitais de fronteira 

(HOMO/LUMO), potenciais de ionização (IP), afinidades eletrônicas (EA) e índices de reatividade 

conceitual — incluindo índices de Fukui — amplamente empregados para racionalizar estabilidade 

eletrônica e propensão a mecanismos redox ou radicalares (CHATTAJAR; SARKAR; ROY, 2006). 

Desta forma, a DFT fornece arcabouço robusto para correlacionar propriedades eletrônicas 

intrínsecas de compostos fenólicos e nanocelulose com suas funções químicas em biofilmes 

poliméricos. 

 
METODOLOGIA 

As estruturas moleculares dos compostos fenólicos representativos da casca de abacaxi (ácidos 
gálico, ferúlico, cafeico e p-cumárico; catequina; epicatequina; quercetina), bem como do fragmento 

de celulose (celobiose) e dos oligômeros de PVA, foram construídas e pré-otimizadas no Avogadro 

1.99 utilizando o método MMFF94. 
 

Em seguida, realizou-se a otimização geométrica e o cálculo de frequências vibracionais no software 

ORCA 6.1 (NEESE, 2012; NEESE, 2022), empregando o funcional híbrido B3LYP (BECKE, 1993; 

LEE; YANG; PARR, 1988) com correção de dispersão empírica D3(BJ) (GRIMME; EHRLICH; 
GOERIGK, 2010), o conjunto de base def2-TZVP (WEIGEND; AHLRICHS, 2005) e o esquema de 

aceleração RIJCOSX (NEESE; OLIVIERO; WIRSCHING, 2009), adotando critérios TightSCF. A 

ausência de frequências imaginárias confirmou a obtenção de mínimos vibracionais. 
 

Após a otimização, foram extraídas as energias de HOMO, LUMO, o gap eletrônico (ELUMO − 

EHOMO), o potencial de ionização vertical via aproximação de Koopmans e a afinidade eletrônica 

(PARR; YANG, 1995). As simulações foram conduzidas tanto em fase gasosa quanto em meio 
aquoso, utilizando o modelo de solvatação implícita CPCM-water (KLAMT; SCHÜÜRRMANN, 

1993; MARENICH; CRAMER; TRUHLAR, 2009). 

 
Por fim, as interações intermoleculares entre celobiose, PVA e fenólicos foram avaliadas 

qualitativamente a partir da densidade eletrônica e inspeção visual de potenciais ligações de 

hidrogênio, auxiliadas pela análise visual dos orbitais e superfícies eletrônicas no IboView. 
 

RESULTADOS E DISCUSSÃO 
Os cálculos realizados permitiram analisar, em nível eletrônico, a contribuição dos principais 
compostos fenólicos presentes na casca de abacaxi para o desempenho funcional de biofilmes de PVA. 
Na fase gasosa, observou-se que moléculas altamente oxigenadas e com maior extensão de 
conjugação, como quercetina e ácido cafeico, apresentaram os menores valores de gap eletrônico 



(3,97 eV e 3,98 eV, respectivamente), sugerindo maior facilidade de transferência eletrônica e maior 
propensão a processos antioxidantes via doação de elétrons. Por outro lado, compostos como 
catequina e epicatequina exibiram gaps mais altos (5,54–5,58 eV), indicando menor reatividade 
eletrônica relativa, coerente com sua estrutura parcialmente saturada e menor conjugação. 
 

 
Figura 1 - Gráfico comparativo de gaps eletrônicos 

  
 
 
A análise comparativa entre fase gasosa e meio aquoso (CPCM) revelou efeitos de solvatação 
relevantes. De modo geral, houve estabilização do HOMO e do LUMO em solução, com tendência à 
diminuição do gap eletrônico para parte dos sistemas — especialmente ácido gálico e ácido ferúlico, 
que apresentaram redução de até ~1,4 eV. Esse comportamento é consistente com o maior caráter 
polar dessas estruturas e destaca o papel do solvente na modulação da atividade antioxidante e de 
interação com a matriz polimérica hidratada. 
 
A inspeção dos orbitais de fronteira reforçou a associação entre conjugação e reatividade. Para os 
ácidos cafeico, ferúlico e p-cumárico, o HOMO concentrou-se predominantemente nos aneis 
aromáticos e grupos hidroxila, indicando esses sítios como mais propensos à oxidação e interação por 
ligações de hidrogênio. Em flavonoides como quercetina, observou-se distribuição eletrônica mais 
delocalizada, favorecendo a estabilização de espécies radicalares. Esse resultado corrobora a literatura 
sobre mecanismo antioxidante dependente de ressonância fenólica e estabilização eletrônica pós-
doação. 
 
A variação de gap observada também sugere diferentes papeis funcionais dos compostos no biofilme: 
moléculas como ácido gálico e quercetina tendem a atuar como principais agentes estabilizantes 
redox, enquanto catequina e epicatequina podem contribuir mais significativamente para interações 
estruturais com a matriz. A análise preliminar da celobiose — embora ainda sem representação 
numérica na tabela — indica gap elevado, em linha com seu caráter estrutural e sua participação em 
processos de carbonização e formação de char, hipótese coerente com estudos prévios de resistência 
térmica e retardância à chama em materiais lignocelulósicos. 
A associação destes resultados eletrônicos com propriedades experimentais relatadas na literatura 
sugere que a combinação de polifenois e celulose na casca do abacaxi pode conferir ao biofilme 
sinergia entre estabilização antioxidante, reforço estrutural e resistência térmica. Assim, a análise 
computacional aqui conduzida fornece um arcabouço mecanístico sólido para racionalizar o 



desempenho observado em filmes de PVA reforçados com extratos vegetais e orienta etapas 
subsequentes envolvendo interação explícita com a matriz polimérica e água. 

 

Molécula HOMO LUMO 

(eV) Gás 

Gap HOMO LUMO 

(eV) CPCM 

Gap 

Ácido gálico -7.52 -1.34 6.18 -5.97 -1.17 4.80 

Ácido cafeico -5.95 -1.97 3.98 -6.02 -1.57 4.45 

Catequina -5.72 -0.18 5.54 -5.94 -0.36 5.58 

Ácido p-cumárico -6.13 -1.96 4.17 -6.13 -1.96 4.17 

Epicatequina -5.78 -0.53 5.25 -5.90 -0.36 5.54 

Ácido ferúlico -7.00 -1.65 5.35 -6.19 -1.92 4.27 

Quercetina -5.87 -1.90 3.97 -5.83 -1.94 3.89 

 

CONCLUSÕES 

Os resultados evidenciaram relação direta entre conjugação fenólica e propriedades eletrônicas, com 

compostos mais conjugados exibindo HOMO mais elevados e menores valores de gap, coerentes 

com maior capacidade antioxidante e estabilização radicalar. A solvatação promoveu estabilização 

eletrônica e redução seletiva do gap em sistemas mais polares, destacando a importância do meio 

aquoso para o desempenho em matrizes de PVA hidratadas. A análise orbital indicou sítios 

preferenciais para interação por ligações de hidrogênio e transferência eletrônica, enquanto o perfil 

eletrônico da celobiose sugeriu papel estrutural e potencial contribuição à formação de char e 

resistência térmica. Esses achados fornecem base mecanística para compreender a atuação sinérgica 

de fenólicos e nanocelulose em biofilmes de PVA e orientam etapas subsequentes de modelagem 

explícita das interações intermoleculares no material 
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