
 

 

 

IX Encontro de Iniciação Científica e Tecnológica 

IX EnICT 

ISSN: 2526-6772 

IFSP – Campus Araraquara 

6 de dezembro de 2025 
 

 

 

 

Análise de um sistema massa-mola amortecido com movimento horizontal e não linearidade 

na força restauradora da mola.  
 

Alauhanya dos Santos De Miranda Cevada, Leandro J. Elias2 

 
1 Graduanda de Engenharia Mecânica, Campus Araraquara do IFSP, alauhanya.m@aluno.ifsp.br  
2 Doutor em Engenharia Elétrica, Campus Araraquara do IFSP, leandro.elias@ifsp.edu.br  

 

 

Área de conhecimento (Tabela CNPq): Sistemas Dinâmicos – 1.01.03.04-0 
 

 
RESUMO: O presente trabalho é resultado de estudos realizados em um projeto de iniciação científica e apresenta a 

análise de um sistema mecânico translacional constituído por dois blocos horizontais conectados por um conjunto de 

molas e amortecedores.  Não linearidades foram inseridas nas equações para aproximar o modelo do sistema físico, desse 

modo, a estabilidade do sistema é investigada mediante expansão em série de Taylor das equações do modelo próximas 

ao ponto de equilíbrio. Simulações numéricas em MATLAB são realizadas para ilustrar os resultados obtidos, assim 

como, para comparar as soluções numéricas do sistema não linear com o sistema linearizado. 
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INTRODUÇÃO 
 

Este trabalho é derivado de estudos realizados em um projeto de iniciação científica, cuja proposta é a análise 

de sistemas mecânicos translacionais. Esses tipos de sistema são caracterizados por variáveis ou grandezas 

físicas cujos comportamentos envolvem, em geral, deslocamentos lineares, velocidades, acelerações e forças 

(Souza e Pinheiro, 2008). Os elementos mais comuns referentes a esses sistemas são massas, molas, 

amortecedores e atritos viscosos, sendo o estudo bastante explorado na área de análise e controle (Bassanezi, 

2011; Dorf e Bishop, 2009; Geromel e Palhares, 2011; Kluever, 2018; Zill, 2016), com aplicações diversas em 

sistemas mecânicos, elétricos, entre outros.  

Neste estudo é proposto uma análise de um sistema massa-mola com movimento horizontal, onde dois blocos 

são conectados por uma mola de constante elástica e, lateralmente, cada bloco é conectado a um ponto fixo 

por um conjunto formado por mola e amortecedor. Com a finalidade de aproximar o sistema físico do modelo, 

são inseridas não linearidades na força restauradora das molas fixas nas extremidades. 

O objetivo do trabalho é realizar a análise do ponto (ou pontos) de equilíbrio do modelo. Para isto, a forma 

espaço de estados é utilizada na representação das equações de movimento (Boyce e Diprima, 2015; Kelley e 

Peterson, 2010; Monteiro, 2011), é realizada a expansão em série de Taylor em torno do ponto de equilíbrio, 

obtendo um sistema linear equivalente via matriz Jacobiana.  A equivalência topológica do sistema não linear 

com o linearizado, próximo ao ponto de equilíbrio, permite investigar a estabilidade do sistema (Kelley e 

Peterson, 2010; Monteiro, 2011). 
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O trabalho está organizado com a apresentação desta breve introdução, seguido da apresentação do modelo e 

referenciais teóricos utilizados no estudo na seção de fundamentação teórica. Os conceitos teóricos são 

aplicados no modelo investigado na seção de metodologia. As simulações e decorrentes análises são 

apresentadas na seção de resultados e discussões, seguidos por uma breve conclusão. 

 

FUNDAMENTAÇÃO TEÓRICA 

 

  

Seja o sistema apresentado na Figura 1 (Ogata, 2010), constituído por dois blocos de massas 𝑚1 e 𝑚2, 

respectivamente, que se movem de forma horizontal após um deslocamento inicial descrito por uma força 𝑢 

aplicada no primeiro bloco. As variáveis 𝑥1 e 𝑥2 são as funções de posição em relação ao tempo dos blocos 1 

e 2, respectivamente. Os blocos são conectados por uma mola de constante elástica 𝑘3  e, lateralmente, cada 

bloco é conectado a um ponto fixo por um conjunto formado por uma mola e um amortecedor, sendo o bloco 

1 fixado à esquerda por uma mola de constante 𝑘1  e um amortecedor com coeficiente de atrito 𝑏1, o bloco 2 

à direita por uma mola de constante 𝑘2 e um amortecedor com coeficiente de atrito 𝑏2.  

 
FIGURA 1. Sistema com duas massas conectadas por amortecedores e molas. 

 
Fonte: Ogata (2010). 

 

As equações de movimento do sistema podem ser obtidas via análise do diagrama de forças em cada 

bloco, onde o sentido positivo é a favor do movimento (à direita), e considerando a segunda lei de Newton 

(Bassanezi, 2011; Geromel e Palhares, 2011; Kluever, 2018; Souza e Pinheiro, 2008). Além disso, os 

parâmetros das constantes elásticas da mola 𝑘1 e 𝑘2 serão tomados como uma função das variáveis de estado 

𝑥1e 𝑥2 , da mesma forma que foi apresentado em Elias, L. J. et al. (2022). Desse modo, são definidas as 

equações de movimento  

 

{
𝑚1𝑥1 

′′ = −𝑘1(1 + 𝑎
2𝑥1

2)𝑥1 − 𝑏1𝑥1
′ − 𝑘3(𝑥1 − 𝑥2) + 𝑢

𝑚2𝑥2
′′ = −𝑘2(1 + 𝑎

2𝑥2
2)𝑥2 − 𝑏2𝑥2 − 𝑘3(𝑥2 − 𝑥1)      

  

 

(1) 

As equações de movimento são reescritas em um sistema de equações diferenciais de primeira ordem, 

necessário para a simulação do sistema em software e também para as análises realizadas neste trabalho (Boyce 

e Diprima, 2015; Monteiro, 2011; Oliveira, Aguiar e Vargas, 2016).  Para isto, são definidas as novas variáveis 

de estado 𝑦1 = 𝑥1, 𝑦2 = 𝑥′1, 𝑦3 = 𝑥2 e 𝑦4 = 𝑥′2, e a forma espaço de estados é obtida 

 

{
  
 

  
 
𝑦1
′ = 𝑦1                                                                                             

 𝑦2
′ = −

𝑘1
𝑚1
 (1 + 𝑎2𝑦1

2)𝑦1 −
𝑏1
𝑚1
 𝑦2 −

𝑘3
𝑚1

(𝑦1 − 𝑦3) + 
𝑢

𝑚1

 𝑦3
′ = 𝑦4                                                                                             

 𝑦4
′ = −

𝑘2
𝑚2

 (1 + 𝑎2𝑦3
2)𝑦3 −

𝑏2
𝑚3

 𝑦4 −
𝑘3
𝑚2

(𝑦3 − 𝑦1)            

 

 

(2) 
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Na modelagem, 𝑢 é considerada uma função de deslocamento horizontal do primeiro bloco. Desse 

modo, é definido 

𝑢 = {
𝜌, 𝑠𝑒  𝑡 = 0
𝜌∗,        𝑠𝑒  𝑡 > 0

 (3) 

onde 𝜌 e 𝜌∗ são números reais e positivos. 

O sistema (2) é não linear e para sua análise foi realizada a expansão em série de Taylor em torno de um 

ponto de equilíbrio do sistema, obtendo assim um sistema linear equivalente (Boyce e Diprima, 2015; Kelley 

e Peterson, 2010; Monteiro, 2011). O ponto de equilíbrio do sistema é obtido por equações algébricas, ao se 

igualar a zero o lado direito de cada equação do sistema (2). 

 

 

METODOLOGIA 

 

Para análise e simulação do sistema, foram utilizados os valores dos parâmetros da Tabela 1. 

 
TABELA 1. Valores dos Parâmetros do sistema 

 

Parâmetro Valor 

𝑘1 5 N/m 

𝑘2 5 N/m 

𝑘3 5 N/m 

𝑏1 6 𝑠−1 

𝑏2 6 𝑠−1 

𝑚1 2kg 

𝑚2 4kg 

Fonte: Autoria própria. 

 

Para determinar o ponto de equilíbrio do sistema, o valor do deslocamento é tomado como 𝑢 = 𝜌∗. 
Quando 𝜌∗ = 0, o ponto de equilíbrio do sistema (2) é a origem. Neste trabalho, foi tomado  𝜌∗ = 0,05 𝑚, 

considerando que o ponto de equilíbrio do sistema foi levemente deslocado. Isto pode representar uma leve 

distensão na mola com o passar do tempo ou até mesmo condições de temperatura extremas do ambiente. 

Assim, o ponto de equilíbrio foi obtido com o software Matlab, utilizando os valores de parâmetros da Tabela 

1. O resultado obtido é 𝑦∗ = (0,0067    0    0,0033    0)𝑇.  

Para a análise do ponto de equilíbrio 𝑦∗, foram definidas as funções 

 

{
  
 

  
 
𝑓1(𝑦1, 𝑦2, 𝑦3, 𝑦4) = 𝑦1                                                                                          

𝑓2(𝑦1, 𝑦2, 𝑦3, 𝑦4) =  −
𝑘1
𝑚1

(1 + 𝑎2𝑦1
2)𝑦1 −

𝑏1
𝑚1

𝑦2 −
𝑘3
𝑚1

(𝑦1 − 𝑦3) +
𝑢

𝑚1

𝑓3(𝑦1, 𝑦2, 𝑦3, 𝑦4) = 𝑦4                                                                                           

𝑓4(𝑦1, 𝑦2, 𝑦3, 𝑦4) =  −
𝑘2
𝑚2

(1 + 𝑎2𝑦3
2)𝑦3 −

𝑏2
𝑚2

𝑦4 −
𝑘3
𝑚2

(𝑦3 − 𝑦1)          

 (4) 

 

 

Derivando as funções 𝑓1,𝑓2, 𝑓3  e 𝑓4  em relação a cada variável de estado, tomando os valores do ponto 

de equilíbrio  𝑦∗ e dos parâmetros da Tabela 1, é obtido o sistema linearizado 
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(

 
 

𝑧1
′

𝑧2
′

𝑧3
′

𝑧4
′
)

 
 
= (

0 1
−5,0028    −3

  
0 0
 2,5 0

 

0       0
1,25 0

 
0   1

−2,5003 −1,5

)(

𝑧1
𝑧2
𝑧3
𝑧4

)+

(

 

0
𝑢
2
0
0)

  

 

(5) 

onde 𝑧 = (𝑧1   𝑧2   𝑧3   𝑧4)
𝑇 é a variável descolada, ou seja, 𝑧 = 𝑦 − 𝑦∗.   

 

 

RESULTADOS E DISCUSSÃO 

 

Os autovalores da matriz associada ao sistema (5) obtidos são 

 
𝜆1 = −1,2312 + 1,9119𝑖
𝜆2 = −1,2312 − 1,9119𝑖
𝜆3 = −1,0188 + 0,8813𝑖
𝜆4 = −1,0188 − 0,8813𝑖

 (6) 

e, como todos têm parte real negativa, o ponto de equilíbrio do sistema é estável. 

A simulação do sistema (5) foi realizada com o software MATLAB, no tempo inicial 𝑢 = 𝜌, onde 𝜌 =
0,01 𝑚. A Figura 2 apresenta a resposta no tempo das variáveis de estado, onde 𝑦 = 𝑧 + 𝑦∗. Verifica-se que 

o sistema evolui para o ponto de equilíbrio 𝑦∗ com o passar do tempo. 

 
FIGURA 2. Resposta no tempo do sistema (5). 

 
Fonte: Autoria própria. 
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A equivalência topológica do sistema linear aproximado (5) comparada com o sistema não linear (2) 

pode ser verificada na Figura 3. As trajetórias das variáveis de estado ficam equivalentes quando se aproximam 

do ponto de equilíbrio, como é previsto na literatura (Kelley e Peterson, 2010; Monteiro, 2011). 
 

 

FIGURA 3. Comparação da resposta no tempo dos sistemas não linear (2) e linearizado (5). 

 
Fonte: Autoria própria. 

 

 

CONCLUSÕES 

 
Neste trabalho foi realizado um estudo de um sistema massa-mola horizontal onde dois blocos são 

conectados por uma mola de constante elástica e, lateralmente, cada bloco é conectado a um ponto fixo por 

um conjunto formado por uma mola e um amortecedor. No modelo, foram tomadas as constantes elásticas das 

molas fixadas lateralmente aos blocos, como uma função não linear da posição, aproximando o modelo do 

sistema físico. Para encontrar o ponto de equilíbrio, as equações algébricas obtidas não admitiam uma solução 

trivial, sendo necessário o uso de software numérico. Para o estudo desse sistema foi necessário obter uma 

representação linearizada, utilizando o método de expansão de série de Taylor em torno do ponto de equilíbrio 

do sistema. A análise realizada mostrou que o ponto de equilíbrio é assintoticamente estável. As simulações 

numéricas em MATLAB do sistema ilustrou a evolução temporal do sistema, assim como, foi apresentada a 

comparação do sistema linear com o sistema linearizado, verificando-se a equivalência topológica entre eles, 

próximo ao ponto de equilíbrio.  
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