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RESUMO: O presente trabalho ¢ resultado de estudos realizados em um projeto de iniciagdo cientifica e apresenta a
analise de um sistema mecanico translacional constituido por dois blocos horizontais conectados por um conjunto de
molas e amortecedores. Néo linearidades foram inseridas nas equagdes para aproximar o modelo do sistema fisico, desse
modo, a estabilidade do sistema ¢é investigada mediante expansdo em série de Taylor das equag¢des do modelo proximas
ao ponto de equilibrio. Simulagdes numéricas em MATLAB sdo realizadas para ilustrar os resultados obtidos, assim
como, para comparar as solu¢cdes numéricas do sistema ndo linear com o sistema linearizado.
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INTRODUCAO

Este trabalho ¢ derivado de estudos realizados em um projeto de iniciagdo cientifica, cuja proposta é a analise
de sistemas mecanicos translacionais. Esses tipos de sistema sdo caracterizados por variaveis ou grandezas
fisicas cujos comportamentos envolvem, em geral, deslocamentos lineares, velocidades, aceleragdes e forcas
(Souza e Pinheiro, 2008). Os eclementos mais comuns referentes a esses sistemas sdo massas, molas,
amortecedores e atritos viscosos, sendo o estudo bastante explorado na area de analise e controle (Bassanezi,
2011; Dorf e Bishop, 2009; Geromel e Palhares, 2011; Kluever, 2018; Zill, 2016), com aplicagdes diversas em
sistemas mecanicos, elétricos, entre outros.

Neste estudo é proposto uma analise de um sistema massa-mola com movimento horizontal, onde dois blocos
sdo conectados por uma mola de constante elastica e, lateralmente, cada bloco é conectado a um ponto fixo
por um conjunto formado por mola e amortecedor. Com a finalidade de aproximar o sistema fisico do modelo,
sdo inseridas ndo linearidades na forca restauradora das molas fixas nas extremidades.

O objetivo do trabalho é realizar a analise do ponto (ou pontos) de equilibrio do modelo. Para isto, a forma
espaco de estados ¢ utilizada na representagdo das equagdes de movimento (Boyce e Diprima, 2015; Kelley e
Peterson, 2010; Monteiro, 2011), é realizada a expansdo em série de Taylor em torno do ponto de equilibrio,
obtendo um sistema linear equivalente via matriz Jacobiana. A equivaléncia topologica do sistema ndo linear
com o linearizado, proximo ao ponto de equilibrio, permite investigar a estabilidade do sistema (Kelley e
Peterson, 2010; Monteiro, 2011).
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O trabalho esta organizado com a apresentagdo desta breve introducdo, seguido da apresentacdo do modelo e
referenciais teodricos utilizados no estudo na se¢do de fundamentacdo teodrica. Os conceitos tedricos sdo
aplicados no modelo investigado na se¢do de metodologia. As simulagcdes e decorrentes analises sdo
apresentadas na se¢do de resultados e discussoes, seguidos por uma breve conclusdo.

FUNDAMENTACAO TEORICA

Seja o sistema apresentado na Figura 1 (Ogata, 2010), constituido por dois blocos de massas m; e m,,
respectivamente, que se movem de forma horizontal ap6és um deslocamento inicial descrito por uma for¢a u
aplicada no primeiro bloco. As variaveis x; € x, sdo as fungdes de posi¢ao em relagdo ao tempo dos blocos 1
e 2, respectivamente. Os blocos sdo conectados por uma mola de constante elastica k5 e, lateralmente, cada
bloco € conectado a um ponto fixo por um conjunto formado por uma mola e um amortecedor, sendo o bloco
1 fixado a esquerda por uma mola de constante k; e um amortecedor com coeficiente de atrito b, o bloco 2
a direita por uma mola de constante k, ¢ um amortecedor com coeficiente de atrito b,.

FIGURA 1. Sistema com duas massas conectadas por amortecedores e molas.
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Fonte: Ogata (2010).

As equagdes de movimento do sistema podem ser obtidas via analise do diagrama de forgas em cada
bloco, onde o sentido positivo é a favor do movimento (a direita), ¢ considerando a segunda lei de Newton
(Bassanezi, 2011; Geromel e Palhares, 2011; Kluever, 2018; Souza e Pinheiro, 2008). Além disso, os
parametros das constantes elasticas da mola k4 e k, serdo tomados como uma fun¢ao das variaveis de estado
x;1e x, , da mesma forma que foi apresentado em Elias, L. J. et al. (2022). Desse modo, sdo definidas as
equacdes de movimento

myxy = =k (1 + a®x§)xy — byxi — ka(xy —x3) + u
myxy = —ky(1+ a?x3)x; — byxy; — ka(x; — x4) (1)

As equagoes de movimento sdo reescritas em um sistema de equagdes diferenciais de primeira ordem,
necessario para a simulagao do sistema em software e também para as analises realizadas neste trabalho (Boyce
e Diprima, 2015; Monteiro, 2011; Oliveira, Aguiar ¢ Vargas, 2016). Para isto, sdo definidas as novas variaveis
de estado y; = x4, ¥, = X'1,V3 = x, € Y, = X',, e a forma espago de estados ¢é obtida

(V1 =1
kq b, ks u
[ — 1 + 24,2 [ —— [ — + -
V2 m, ( a“yi)y: m, V2 m 01— y3) m, o
Y3 =Ya
ks b, k3
r_ 1 + 2.,2 _ — —
Va m_z ( a‘y3)ys ms Va m, (s —¥1)
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Na modelagem, u ¢ considerada uma funcdo de deslocamento horizontal do primeiro bloco. Desse
modo, ¢ definido

(P set=0
u_{p*, set>0 (3)

onde p e p* sdo nimeros reais € positivos.

O sistema (2) é ndo linear e para sua analise foi realizada a expansdo em série de Taylor em torno de um
ponto de equilibrio do sistema, obtendo assim um sistema linear equivalente (Boyce e Diprima, 2015; Kelley
e Peterson, 2010; Monteiro, 2011). O ponto de equilibrio do sistema € obtido por equacdes algébricas, ao se
igualar a zero o lado direito de cada equacdo do sistema (2).

METODOLOGIA
Para analise e simulacao do sistema, foram utilizados os valores dos parametros da Tabela 1.

TABELA 1. Valores dos Pardmetros do sistema

Parametro Valor
ky 5 N/m
k, 5 N/m
ks 5 N/m
by 65t
b, 65t
my 2kg
m, 4kg

Fonte: Autoria propria.

*

Para determinar o ponto de equilibrio do sistema, o valor do deslocamento ¢ tomado como u = p*.
Quando p* = 0, o ponto de equilibrio do sistema (2) é a origem. Neste trabalho, foi tomado p* = 0,05 m,
considerando que o ponto de equilibrio do sistema foi levemente deslocado. Isto pode representar uma leve
distensdo na mola com o passar do tempo ou até mesmo condi¢des de temperatura extremas do ambiente.
Assim, o ponto de equilibrio foi obtido com o software Matlab, utilizando os valores de parametros da Tabela
1. O resultado obtido ¢ y* = (0,0067 0 0,0033 0)T.

Para a analise do ponto de equilibrio y*, foram definidas as fungdes

f1(1, Y2, Y3, Y4) = Y1
ey 2,,2 by ks U
200Y2Y3Y0) = —— A +ay Dy ——y, —— 1 —y3) + —
my my my my
X 4)
3001, Y2, Y3, Y4) = Ya

fi )= —2 (1 g atyyyy -2y -2y
k4)’1;)’2;)’3»3’4 m, Y3)Y3 m2y4 m, Y3 —W

Derivando as fungdes f; f, f3 € f, em relagdo a cada variavel de estado, tomando os valores do ponto
de equilibrio y* e dos pardmetros da Tabela 1, é obtido o sistema linearizado
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onde z = (z; z, z3 z,)T éavaridvel descolada, ou seja, z =y — y*.

RESULTADOS E DISCUSSAO

Os autovalores da matriz associada ao sistema (5) obtidos sao

A =-1,2312 +1,9119i
A, =-1,2312 - 1,9119i ©)
A3 =—1,0188 + 0,8813i
A4 =-—1,0188 — 0,8813i
e, como todos tém parte real negativa, o ponto de equilibrio do sistema ¢ estavel.
A simulagdo do sistema (5) foi realizada com o software MATLAB, no tempo inicial u = p, onde p =

0,01 m. A Figura 2 apresenta a resposta no tempo das varidveis de estado, onde y = z + y*. Verifica-se que
o0 sistema evolui para o ponto de equilibrio y* com o passar do tempo.

FIGURA 2. Resposta no tempo do sistema (5).
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Fonte: Autoria propria.
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A equivaléncia topoldgica do sistema linear aproximado (5) comparada com o sistema nao linear (2)
pode ser verificada na Figura 3. As trajetdrias das varidveis de estado ficam equivalentes quando se aproximam
do ponto de equilibrio, como ¢ previsto na literatura (Kelley e Peterson, 2010; Monteiro, 2011).

FIGURA 3. Comparagdo da resposta no tempo dos sistemas nao linear (2) e linearizado (5).
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CONCLUSOES

Neste trabalho foi realizado um estudo de um sistema massa-mola horizontal onde dois blocos sdo
conectados por uma mola de constante elastica e, lateralmente, cada bloco ¢ conectado a um ponto fixo por
um conjunto formado por uma mola e um amortecedor. No modelo, foram tomadas as constantes elasticas das
molas fixadas lateralmente aos blocos, como uma fung@o ndo linear da posi¢do, aproximando o modelo do
sistema fisico. Para encontrar o ponto de equilibrio, as equagdes algébricas obtidas ndo admitiam uma solugao
trivial, sendo necessario o uso de software numérico. Para o estudo desse sistema foi necessario obter uma
representagdo linearizada, utilizando o método de expansio de série de Taylor em torno do ponto de equilibrio
do sistema. A analise realizada mostrou que o ponto de equilibrio é assintoticamente estavel. As simulagdes
numéricas em MATLAB do sistema ilustrou a evolucao temporal do sistema, assim como, foi apresentada a
comparacao do sistema linear com o sistema linearizado, verificando-se a equivaléncia topologica entre eles,

proximo ao ponto de equilibrio.
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