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RESUMO: Processos redox moleculares sustentam aplicações em eletrônica molecular, sensores e catálise,
tornando essencial a previsão teórica confiável desses potenciais. No entanto, práticas de cálculo ainda variam
amplamente e dificultam comparações diretas com resultados experimentais. Moléculas eletroativas foram
investigadas utilizando a DFT (Teoria do Funcional da Densidade) destinada à estimativa de propriedades redox,
com ênfase em ferroceno e derivados em acetonitrila. O protocolo organiza a geração padronizada de entradas,
a execução reprodutível no ORCA e a extração sistematizada de grandezas eletrônicas e termodinâmicas. A
estratégia contempla otimizações em fase gasosa e solução implícita (SMD/CPCM), além da composição de
contribuições necessárias à obtenção de potenciais padrão. O conjunto de etapas garante consistência entre
estados e rastreabilidade de parâmetros, estabelecendo uma rota sistemática para a predição de potenciais redox
e sua comparação quantitativa com valores experimentais.
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INTRODUÇÃO
Moléculas eletroativas reversíveis desempenham papel central em sensores, eletrônica molecular e

sistemas de conversão de energia (BARD; FAULKNER, 2001; GOODING; GONG, 2021). A previsão teórica
precisa de potenciais redox ainda constitui um desafio, dada a sensibilidade a protocolos de otimização, correções
termodinâmicas e tratamento adequado da solvatação (TRUHLAR et al., 2009; CARAMORI; MALDONADO,
2017). O ferroceno permanece como referência na calibração computacional e comparação com valores
experimentais em solventes orgânicos (GROSS et al., 2013; QIN et al., 2021). Este trabalho apresenta um fluxo
reprodutível baseado em DFT para estimar potenciais redox em acetonitrila, conectando propriedades eletrônicas
e energéticas a dados eletroquímicos e enfatizando consistência e rastreabilidade dos cálculos.

FUNDAMENTAÇÃO TEÓRICA
A formulação de Kohn–Sham fornece a base para descrever estados eletrônicos com bom equilíbrio entre

custo e precisão (KOHN; SHAM, 1965), enquanto funcionais híbridos com correção de dispersão aprimoram



a descrição de interações e estados redox em organometálicos (BECKE, 1993; GRIMME et al., 2010). Bases
da família def2 oferecem desempenho sistemático para ligantes orgânicos e centros metálicos (WEIGEND;
AHLRICHS, 2005), e a análise vibracional assegura mínimos e contribuições entálpico–entrópicas relevantes
(PATERSON et al., 2022). Modelos contínuos de solvatação, como CPCM e SMD, capturam efeitos de meio
necessários à comparação com referenciais experimentais (KLAMT; SCHÜÜRMANN, 1993; MARENICH;
CRAMER; TRUHLAR, 2009). A aplicação a ferroceno e derivados possibilita validar o protocolo por meio
de referência eletroquímica consolidada (GROSS et al., 2013; QIN et al., 2021). Reunindo esses elementos, a
estimativa do potencial padrão em solução decorre de um ciclo termodinâmico que liga a energia livre no gás às
contribuições de solvatação e ao referenciamento experimental, conforme as equações a seguir.
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E◦ = −
∆G◦

(sol)

nF
, (2)

∆G◦
(sol) = ∆G◦

(g) +∆G◦
solv(Fc)−∆G◦

solv(Fc
+), (3)

∆G◦
(g) = −IEadiab +TC− T∆S, (4)

∆G◦
ss = RT ln(24,46) (298 K), (5)

E◦
X vs Fc+/Fc

= E◦(X+/X)− E◦(Fc+/Fc). (6)

Em (1), descreve-se a semirreação do par Fc+/Fc em meio solucionado: o marcador “(sol)” indica
espécies sob campo de solvatação contínua (CPCM/SMD), enquanto “(g)” designa o padrão gasoso ideal. Pela
definição de Nernst na (2), o potencial padrão E◦ relaciona-se diretamente à variação de energia livre padrão
em solução ∆G◦

(sol) por E◦ = −∆G◦
(sol)/(nF ), onde n é o número de elétrons transferidos (para Fc+/Fc,

n = 1) e F = 96485,33212 C mol−1 é a constante de Faraday. A decomposição termodinâmica em (3) escreve
∆G◦

(sol) como a soma da contribuição de fase gasosa ∆G◦
(g) com as energias livres de solvatação das espécies

reduzida e oxidada, ∆G◦
solv(Fc) e ∆G◦

solv(Fc
+), calculadas pelos modelos contínuos. A expressão para a fase

gasosa na (4) usa a energia de ionização adiabática IEadiab (diferença entre as energias eletrônicas de mínimos
otimizados do cátion e do neutro), a correção térmica TC e o termo entrópico T∆S. Aqui, ZPE (zero-point
energy) é a energia vibracional de ponto zero ZPE = 1

2

∑
i hνi do oscilador harmônico; TC (thermal correction

to enthalpy) é a correção térmica à entalpia H relativa à energia eletrônica Ee, isto é, TC = H − Ee =
ZPE +∆Htrans +∆Hrot +∆Hvib a T = 298,15 K e p = 1 atm; o termo T∆S utiliza a variação de entropia
harmônica padrão (somas de contribuições translacionais, rotacionais e vibracionais) para converter a correção
entálpica em energia livre. A (5) aplica a correção de estado padrão gás→solução, ∆G◦

ss = RT ln(24,46), que
decorre do volume molar do gás ideal 24,46 L mol−1 a 298 K; aqui R = 8,314462618 J mol−1 K−1 e T é a
temperatura absoluta. Por fim, (6) explicita o referenciamento: um potencial absoluto E◦(X+/X) é convertido
para a escala experimental “vs Fc+/Fc” por E◦

X vs Fc+/Fc
= E◦(X+/X)− E◦(Fc+/Fc).

METODOLOGIA
Os cálculos foram conduzidos no nível DFT/B3LYP com correção de dispersão D3(BJ) e base def2-

TZVP, mantendo-se exatamente o mesmo conjunto de opções para todos os estados redox a fim de evitar vieses
metodológicos. Partiu-se de otimizações no gás, realizadas com critérios rigorosos de convergência eletrônica e
geométrica (malhas de integração finas e SCF apertado), e na sequência aplicou-se o tratamento de solvente
para acetonitrila por modelos contínuos (SMD e CPCM), preservando cavidades, malhas e tolerâncias idênticas
às usadas no vácuo. Em cada ambiente, as frequências harmônicas foram avaliadas no mesmo nível de teoria
para assegurar que as estruturas correspondem a mínimos verdadeiros (ausência de frequências imaginárias);
quando modos espúrios eram detectados, procedia-se a reotimizações com Hessiano inicial e recálculo periódico
até a eliminação das instabilidades. Somente após essa validação vibracional foram extraídas as grandezas
termoquímicas (H , T∆S e G, a 298,15 K), garantindo consistência entre gás e solução e comparabilidade direta
entre as espécies investigadas.



Para viabilizar rastreabilidade e reduzir variabilidade procedimental, foi desenvolvido um programa
que automatiza a sequência de execução: a partir de um arquivo de controle (espécies, cargas, multiplicidades,
solvente e opções de nível de teoria), o programa gera entradas padronizadas do ORCA, executa as etapas e
compõe as grandezas termodinâmicas. No estágio atual, o pipeline efetivo utilizado é: (i) otimização única no
gás; (ii) quatro simulações de freq sem reotimização (0_gas, 1_gas, 0_solv, 1_solv); (iii) uso de CPCM ou SMD;
(iv) extração de H , T∆S e G; (v) composição de ∆Gsol e conversões para potenciais absolutos e vs SHE. Todos
os parâmetros numéricos e caminhos de arquivos são registrados em manifesto, e os resultados consolidados são
exportados em planilha para auditoria.

Figura 1: Fluxo computacional adotado: leitura e preparação, execução no ORCA (gás e, quando definido,
CPCM/SMD em MeCN), extração termoquímica, composição de ∆G e conversões para E absoluto e E vs

SHE, com registro integral de parâmetros para rastreabilidade.

RESULTADOS E DISCUSSÃO
Foi conduzida uma série de cálculos envolvendo o ferroceno e derivados metil (–CH3), amina (–NH2),

hidroxila (–OH) e carboxila (–COOH), explorando estados neutros e catiônicos em acetonitrila (SMD). As
geometrias convergiram para mínimos reais em todos os casos. As energias eletrônicas permitiram estimar os
potenciais de ionização verticais (PI). Observou-se redução do PI para doadores eletrônicos (FcCH3, FcNH2),
com valores próximos de ∼ 5,88–5,89 eV, em relação ao ferroceno (PI ≈ 5,97 eV). Para retiradores, verificou-se
aumento: FcOH em torno de 6,08 eV e FcCOOH próximo de 6,21 eV.

Tabela 1: Tabela 1 — Comparativo entre PI do projeto (eV; SMD/MeCN), deslocamento estimado de potencial
(∆E ≈ ∆PI, V) e tendências de literatura para E1/2 em MeCN (vs Fc+/Fc).

Composto PI (eV) — projeto Predito (DFT, estim.) (V) Literatura: ∆E1/2 (V vs Fc/Fc+)

Fc (ferroceno) 5,97 0,00 0,00 (referência)
FcCH3 5,88 −0,09 catódico, 0 a −0,15
FcNH2 5,89 −0,08 catódico, 0 a −0,20
FcOH 6,08 0,11 anódico, 0 a +0,20
FcCOOH 6,21 0,24 anódico, +0,10 a +0,30

As diferenças geométricas entre estados foram pequenas, sugerindo baixa reorganização estrutural,
característica favorável a processos de transferência de carga eficientes. Com as grandezas termoquímicas



extraídas automaticamente, a composição de ∆G◦
(sol) e a conversão para E◦ pela Eq. (2) produziram, para o par

ferrocenium/ferroceno, valores compatíveis com a referência experimental, com desvio típico inferior a 0,1 V. O
comportamento relativo previsto na Tabela 1 é coerente com tendências de literatura para variações de E1/2 em
MeCN quando referenciadas a Fc+/Fc.

CONCLUSÕES
A metodologia apresentada conecta, de forma reprodutível, cálculos de estrutura eletrônica a estimativas

de potenciais padrão em solução. O programa desenvolvido reduz graus de liberdade metodológicos, padroniza
a sequência gás/solução, valida mínimos e compõe o ciclo termodinâmico com registro completo de parâmetros,
viabilizando comparações diretas com dados experimentais. Nas séries ferrocênicas avaliadas, as tendências
previstas concordam com a literatura e fornecem base robusta para extensões a outras famílias redox.
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